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Abstract 

We study the noncommutative differential geometry of the algebra of endomorphisms of any 
SU (n)-vector bundle. We show that ordinary connections on such SU (n)-vector bundles can be 
interpreted in a natural way as a noncommutative 1 -form on this algebra for the differential calculus 
based on derivations. We interpret the Lie algebra of derivations of the algebra of endomorphisms 
as a Lie algebroid. Then we look at noncommutative connections as generalizations of these usual 
connections. 0 1998 Elsevier Science B.V. 
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0. Introduction 

The noncommutative differential geometry of the algebra of matrix-valued functions on a 
manifold has been studied in [6]. There it was pointed out that noncommutative connections 
are a good candidate to unify at the classical level ordinary gauge fields and Higgs fields 
in a unique object. This idea has been widely used in a variety of contexts. In this paper, 
as a generalization of [6], we consider the noncommutative differential calculus based on 
derivations for the algebra of endomorphisms of an SU(n)-vector bundle. 
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In Section 1, we recall the definition of the differential calculus based on derivations and 
the main results for the algebra of matrix-valued functions. In Section 2. we consider the 
algebra of endomorphisms of an SU(n)-vector bundle. We show that the affine space of 
SU (n)-connections is an affine subspace of the space of noncommutative I -forms of this 
algebra. In Section 3, the Lie algebra of derivations of this algebra is interpreted as a Lie 
algebroid. In Section 4, noncommutative connections are considered. It is shown that they 
incorporate naturally Higgs fields as in the case of matrix-valued functions. 

1. Derivations based noncommutative differential calculi 

The differential calculus based on derivations is a natural generalization of the differential 
algebra of differential forms on a manifold ([3,4,7] and references therein). 

I. I. Construction 

Let ?I be an associative algebra with unit. Then one has the well-known results: 

Lemma 1. The vector space Der(Yl) of derivations qf ‘?I is a Lie algebra and a module 
over the center Z(‘?f) of ‘?I. The center Z(3) is stable by Der(\‘l). The vector space of inner 
derivations Int(Y1) is a Lie ideal and a Z(3)-submodule. 

The quotient Der(?t)/Int(?l) will be denoted by Out(%). This is then a Lie algebra and a 
module over 2(%). 

One can consider the complex &,,(91) of 2(‘?1)-multilinear antisymmetric maps from 
Der(?l) to ‘?I. It is naturally an N-graded algebra. One defines a differential d (of degree 1) 
on this graded algebra by setting, for any derivations XI , . . . Xn+t and any w E f12;Ser(?I ) 

;Iw(X,, . , X,,+1) = C(-l)‘+‘Xiw(X,. ! . . 1 Xn+I) 
i=l 

+ C (_l);+j ’ ’ W([Xi, Xj], . . ‘i . . V . . X,1+,). 
Ig<jg+l 

The graded differential algebra (&, (\‘I), d) is the first noncommutative differential cal- 
culus we define on Yl. 

The second one is the smallest differential subalgebra of &.,(?l) generated by ?I. We 
denote it by &,r(?l). Any element of Db,,(?l) is a sum of terms a0 ial . . ian for U; E !‘I. 

These definitions are generalizations of the usual differential calculus on a manifold in 
the sense that when ?I is the algebra CDS(M) of smooth functions on a finite-dimensional 
regular smooth manifold M, these differential algebras coincide with the graded differential 
algebra of differential forms on M. 
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1.2. The matrix algebra 

The noncommutative geometry of the matrix algebra for the differential calculus based 
on derivations has been described in [4,5]. We briefly summarize here the results. 

The algebra M,(C) has only inner derivations. The Lie algebra Der(M,(C)) = Int(M, 
(a3)) can be identified with the Lie algebra sl(n. a)). The two previously defined differential 
calculi are the same and one has 

fiD,,(f%(c)) = M,(C) @ l\sl(% c)*, 

where sl(n, C)* is the dual of sl(n, 0. We denote by d’ the differential on this complex. 
There exists a particular 1 -form 0 defined by 

iO(ad,) = y - iTr(y)l 

for any )/ E M,,(c). This l-form satisfies 

d’i0 - (iH)2 = 0 

and for any y E M,,(c) = @,,(M,,(@)), one has d’y = [ie, y]. 

1.3. The matrix-valued,functions algebra 

The derivations based differential calculus for the algebra ?I = P(M) @I M, (UZ) for a 
manifold M has been studied in 163. The main results are the following. 

The center of the algebra ?I is the algebra P(M) of smooth complex-valued functions 
on M. The Lie algebra of derivations Der(?l) split canonically as a P(M)-module into 

Der(!X) = [Der(Cm(M)) @ 11 6B [CM(M) @ Der(M,(C))]. 

where Der(rY(M)) = r( TM) is the ordinary Lie algebra of vector fields on M and 
Der(M,l(@)) = sl(n, a=). 

This result implies the canonical decomposition 

where Q(M) is the graded differential algebra of differential forms on M, with differential 
d. The differential d on DD,,(?l) is the sum d = d + d’. In particular, restricted to ‘3, 
d = d + adie. 

The l-form 8 is well defined in fitI,,, if we extend it on Der(Y1) by zero on the T(TM) 
terms. 0 is real in the sense that it is real-valued on real (i.e. hermitian) derivations. 

2. The algebra of endomorphisms of a vector bundle 

In the following, by an SU(n)-vector bundle E we mean a hermitian vector bundle of 
rank n such that A” E is trivial (i.e. trivializable with a given trivialization). 
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Let E be an SU(n)-vector bundle over a regular finite-dimensional smooth (i.e. para- 
compact, etc.) manifold M, and denote by End(E) the fiber bundle of endomorphisms of E. 
The sections of this fiber bundle in matrix algebras form a unital algebra, which we denote 
by !‘I. The hermitian structure gives a natural involution on this algebra, which we denote 
by S H S*. The center of this algebra is exactly C”(M) (smooth functions on A4 with 
values in C), identifying ,f E C?(M) with ,f‘l E !‘I. The trace map. defined on each fiber 
of End(E), gives a natural map 

Tr : \‘I 4 C”(M) 

Similarly. the determinant defines a natural map 

det : ?I + C%(M). 

By restriction to the center, there is a natural map 

p : Der(?l) + Der(COO(M)) = r(TM). 

This map is the quotient map in the short exact sequence of Lie algebras and C%(M)- 
modules 

0 + Int(‘3) + Der(!?)-%Out(?l) = T(TM) + 0. (1) 

For any derivation X E Der(?l), let us denote by X E T(TM) the associated vector field 
on M. Notice now that the 1 -form i0 defined in the previous section is well defined here on 
Int(?l): 

iH(ud,) = 1/ - ATr(y)l 

for any 1/ E ‘?I. Any inner derivation ad, will be taken such that y is traceless. It is then a 
section of the fiber bundle of traceless endomorphisms of E. We denote by ?I0 the set of 
such sections. The Lie algebra Int(%) 2 ‘310 operates in the sense of Cartan on Qnner(\‘l) 
[ 1,3]. The horizontal elements for this operation can be considered as differential forms on 
M with values in End(E). As will be seen below, the curvature of a connection on E can 
be interpreted in this way. The basic forms are ordinary differential forms on M. In the 
following horizontality will refer to this operation. 

The subalgebra 2(?1) of 41 can be considered as a quotient manifold algebra in the sense 
of [9]. In this interpretation, the algebra 3 looks like a principal bundle and 2(?1) as the 
algebra of functions on the base space. The Lie algebra of the gauge group, defined as the 
Lie algebra of derivations which are zero on Z(3). is then Int(91). As we will see later. this 
point of view will be confirmed when we will consider ordinary connections on E. 

A derivation X E Der(?l) will be said real if (XS)* = X(S*) for any S E \‘I. By duality. 
one defines hermitian and antihermitian noncommutative differential forms. 

Let us now look at the differential calculi based on derivations. 

Proposition 2. The two d@erential calculi fi&, (“1) and S&_ (“1) coincide. 
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Indeed, by using a finite open covering of M with open sets which trivialize E, and results 
on smooth matrix-valued functions, one can show by standard arguments that any element 
of &,(?I) can be written as a finite sum of terms an da, . . . &zp with Eli E 3. It is then an 
element of flL,,(?l). 

We will denote by ;i the differential on QD,r(?l) = &,,(?l). 
In the trivial case (E = M x @“), the algebra ?I is exactly Cm(M) @ M,,(C), and we 

are back to the situation of the previous section. In particular, the short exact sequence (1) 
splits canonically as COO(M)-modules. 

In the general case, one has the following situation. 

Proposition 3. Let V E be any connection on E. Then there exists a noncommutative 1 :form 
a! in L?&,(?I) such that any derivation X E Der(?l) can be decomposed as 

X = Vx - ad,(x). (2) 

where V is the naturally associated connection to VE on the jiber bundle End(E). In L 
other words, restricted to 91, the noncommutative differential d can be written with obvious 
notation 

i=V-ad,. 

We recall that V is the tensor product of the connections VE on E and BE* on the dual 
vector bundle E * of E where V E* satisfies X(E, e) = (V!*E, e) + (E, V:e) for any sections 
EofE*andeofE. 

Proofi First, notice that for a fixed X E I( TM), VX : ?I -+ 9 is naturally a derivation. 
Now, the image in r(TM) of the derivation X - Vx is zero, as can be seen by applying it 
on any function in COO(M). So the derivation X - VX must be in the kernel of the quotient 
map. It is then inner. Define a! by 

a(X) = -it9 (X - VX). 

This is obviously a noncommutative l-form on Yl which satisfies by definition ad,(x) = 
vx - x. 0 

Notice that this noncommutative I -form takes its values in the traceless elements of PI. 
In fact, one can see a! as an extension of -iO to all derivations. Indeed, one has obviously 
cr(ady) = -y. Recall the convention that Tr(y) = 0. 

This proposition gives us a splitting of the short exact sequence (1) of C?(M)-modules. 
This splitting is not canonical and is only defined through a choice of a connection on E, 
by the C?‘(M)-linear map X H Vx from T(TM) into Der(Sl). This has to be compared 
with the usual (commutative) situation where one can interpret a connection as a map from 
vector fields on M into vector fields on a principal bundle over M. In our situation, the 
algebra ?1 plays a similar role to this principal bundle. 

Let us now look at this noncommutative l-form cz in local expressions. On any open 
subset U c M of a trivialization of End(E), the algebra 91 looks like C”(U) @ M,(C). Let 
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S E 91 be a section. Restricted to 17, this section can be regarded as a matrix-valued function 
s : U -+ M,(C). Let U’ c M be a second open subset of a trivialization of End( E). The 
restriction to U’ of the section S is an other matrix-valued function s’ : U’ -+ M,, (C3) which 
is related to s by s’ = g-‘sg for a transition function g : U n U’ + SU(n). 

A derivation X of the algebra 3 can also be trivialized. Because the algebra looks locally 
as C”(U) 6$ M,(C), this trivialization has the form Xl,, = X + cld, for X an ordinary 
vector field on U and y a traceless matrix-valued function on U. X is nothing but the 
restriction to U of the image of X in r(TM). On U’ as above. the trivialization of X has 
the form X,:, = X + udyt. It is easy to show that on U n II’. one then has 

y’ = g&‘q + &(Xg) 

Because the structure group is SU(n). the last term is traceless. 

Corollary 4. The local expression of the noncommutative I Tform Q is 

%x(&x) = A(X) - Y, 

where A is the local expression of the connection l-form of V” (with values in the Lie 
algebra SU (n)). 

One can verify directly that those local expressions can be joined together into the global 
object a! because the inhomogeneous term of the transition relations of the A fields cancels 
exactly the inhomogeneous term of the transition relations of the v fields. Notice the im- 
portance of working on a SU(n)-vector bundle. The tracelessness of the connection i-form 
is essential here. Strictly speaking, SL(n. c)-connections would be sufficient. 

Corollary 5. The canonical mapping VE H LY is an isomorphism qf clffine spaces,from 
the ufJine space of SU (n)-connections on E onto the afine space cftraceless antihermitiun 
noncommutative 17fr,rms on ?I satisfiing a(udy) = -y. 

Indeed, a noncommutative 1 -form a is the image of an SU (n)-connection if and only if 
a(ady) = -y for any y E 910, Trol(X) = 0, and a(X)* + a(X) = 0 for any real X E 
Der(‘3). As we will see below, this latter condition can be interpreted as a compatibility 
condition with a hermitian form. Now. one can work on the noncommutative l-form a! 
instead of V E. 

Proposition 6. The Lie algebra qf real derivations on ‘!I u(‘ts on the space of SU (tl)- 
connections through the Lie derivative dejned on &&,(?l). 

Restricted to inner real derivations, the Lie derivative corresponds to ir$nitesimal gauge 
transformations on connections. 

Proofi It is easy to see that for any real derivation X E Der(\!l), if CY is the image of a 
SU(n)-connection on E, then C,J+Y = (ix 2 + &x)ol satisfies 

(Gw)(ady) = 0 and (&a)(Y)* + (LdHY) = 0 
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for any y E “10 and real Y E Der(91). Then CC + Cxa is the image of an SU(n)-connection 
on E. Now, for X = ad6 with <* + < = 0, one has 

This is exactly an infinitesimal gauge transformation on VE if { is considered as an element 
of the Lie algebra of the group of gauge transformations of E. ??

Notice that in this proof, we have used the fact that the real inner derivations ad6 are 
exactly in correspondence with the elements < of the Lie algebra of the gauge group of E. 

In ordinary differential geometry, the connection V” on E is related to a covariant vector- 
valued 1 -form on an associated principal bundle (the bundle of SU @)-frames of E). Here, 
as we have seen above, the algebra ‘3 replaces in a certain sense this principal bundle. The 
connection VE is then associated with a noncommutative l-form on 91. However, one has 
to notice two important facts. First, there is no need of an equivariance condition. Instead, 
one fixes the value of the l-form on inner derivations. Second, there is a natural way to 
generalize this structure taking any noncommutative 1 -form on ?L. In Section 4 we shall see 
that any noncommutative 1 -form represents a noncommutative connection and gives rise to 
a Yang-Mills-Higgs-type multiplet. 

Proposition 7. Let (Y be the noncommutative 1 -form associated to the connection V E on 
E. Let us denote by RE the curvature of VE. Then one has 

RE(X, Y) = ;1a(X, Y) + La(X), (Y(Y)] 

for any X, Y E Der(?I), X, Y being their images in T(TM). In particular; the expression 
& + CY’ is a horizontal element of Q&.(?I). 

Proo$ The direct computation of da(X, Y) + [a(X), w(Y)] in a local trivialization gives 
immediately dA(X, Y) + [A(X), A(Y)]. 0 

This proposition gives us an interpretation of the curvature RE in terms of a horizontal 
noncommutative 2-form on \‘I. 

The curvature of the associated connection V on End(E) is R = ad,+. One verifies that 
the decomposition OX = X + ad,(x) yields directly to 

RCX, Y) = Qd;l~(X.Y)+,(U(X1.(Yol. 

The curvature of VE can be interpreted as the obstruction on the morphism of modules 
from vector fields on M into vector fields on the associated principal bundle, to be a mor- 
phism of Lie algebras. The above formula can be interpreted in a similar way: R is the 
obstruction on the application X H VX to be a morphism of Lie algebras from r(TM) to 
Der(%). 



3. Der( ?I) as a Lie algebroid 

There is a deep connection between the above discussion and the notion of Lie algebroid. 
Let us recall first the definition of Lie algebroids [Sl. 

A Lie algebroid is a vector bundle L over a smooth manifold M with a structure of Lie 
algebra on its smooth sections and a vector bundle morphism p : L + TM, called the 
anchor, such that 

[P(U). p(h)1 = P([u, bl) and [n. .f’hl = .f’[u. hl + (~(~)f’)h, 

where u and b are sections of L, [. ] is the Lie bracket on sections of L (or on vector helds 
on M in the first formulae) and ,f’ is a function on M (the anchor being naturally defined on 
sections of L). 

One important example of Lie algebroid is the Atiyah algebra A(E) associated to any 
vector bundle E over M. It is defined as the Lie algebra of first-order differential operators 
on E with symbol IdE @ X for X a vector field on M, the anchor being the symbol map 
0 : A(E) --f r(TM). One has a natural short exact sequence 

0 --+ T(End(E)) + A(E)-%T(TM) + 0 

of sections of vector bundles. 
Associated to any Lie algebroid L there is a differential calculus on the sections of AL* 

with differential dL given by 

dLw(el,. . L,,+I) = 
c 

(-lY+'p(e;)w(t,.... ,; . . ..C..,I) 

!=I 

+c 

/ 
(-l)'+"w(lC;,e,jI.... ‘i . . . 3 . . ..C.f+l) (3) 

1g</5rr+1 

foranyw E AnL* and!, ,..., [,,+I E L. 
With previous notations, an L-connection on E is an anchor-preserving map 

D : L -+ A(E). 

The curvature of such a connection is defined as the obstruction to be a Lie-algebra mor- 
phism. 

Consider now E as in the previous section. Then Der(\‘l) is in a natural way the sections 
of a Lie algebroid, with anchor given by the restriction p to P(M) = Z(3) of derivations 
of ?I (see the sequence (1)). It is easy to see that ;20zr (\‘I) is just 21 @~(:II) /\,,,,,Der(%)* 
and the differential associated to the Lie algebroid Der(Yl) defined on /\,(,,,Der(?l)* as 

above (3) is just the restriction of A. 
There is a natural anchor-preserving map A(E) -+ Der(?l) which associates with any 

T E A(E), the derivation S H [T, S] for any S E ‘?I where the commutator is that ot 
operators on E. Locally, it is also given by IdE @X + A t-+ X +adA with obvious notations. 
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This map, together with previously defined ones, gives us the following commutative, exact 
diagram of P(M)-modules and Lie algebras: 

I 
0- P(M) = C”(M) - 0 

I I I 
i LT 

0- “I - d(E) - f(TM) - 0 

ad 1 I /I 
0 - Int(\!l) - Der(R) A f(TM) A 0 

I I I 
0 0 0 

In this diagram, iB : Int(Y1) + Yl gives a splitting as P’(M)-modules and Lie algebras 
of the first column. Any ordinary connection on E splits the short exact sequence of the 
second line by X H V: and of the third line by X H VX. Any noncommutative l-form 
is a map from Der(Yl) to ?l. So, the difference of two Der(Sl)-connections in the sense of 
Lie algebroids is a noncommutative 1 -form on ‘?I. 

Proposition 8. For any given SU(n)-connection VE on E and any X E Der(%), dejine 

6 : Der(91) -+ d(E) by 

ii(X) = v; -a(X). (4) 

Then one has the following: 

(i) 6 is independentfrom the choice of VE, 

(ii) i!) is a splitting of the short exact sequence 

0 + Cm(M) -+ d(E) + Der(Yl) + 0 (5) 

considered as an exact sequence of P’(M)-modules as well as an exact sequence 
of Lie algebras, 

(iii) 6 induces the splitting it? of 

0 + P(M) --f ?I --f Int(B1) -+ 0. (6) 

It follows in particular that 6 is a Der(?l)-connection with vanishing curvature. 
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Proof: For any given SU(n)-connection VE on E, with definition (4) for any X E Der(?l) 

and any S E “1, one has [h(X), S] = VxS - [a(X). S] = XS. So 6 is a splitting of 
(5) as C?(M)-modules. For any X, Y E Der(‘?l), one can show by direct computation, 

using Proposition 7, that [h(X). b(y)] - h([X. y]) = 0. So 6 is a splitting of (5) as Lie 

algebras. Restricted to inner derivations, h coincides with iB. Then 6 induces the splitting 
of (6). 

If V’E is an other SU(n)-connection on E, then 0’: - o’(X) - (Vi - a(X)) = 
V$- ; V - iH(Vk - VX), which is zero because of the relations between VE and V. 0 

It is obvious that h is anchor preserving, and is then a Der(?t)-connection. Because it is 
a splitting of (5) as Lie algebras, its curvature vanishes. 

Notice that in a local trivialization of E, b is given by X + ad, ++ IdE @ X + )/ where 
as usual, y is traceless. 

Any other splitting of (5) as C?(M)-modules and Lie algebras is of the form X ++ 

i;(X) + 4(X) with 4 E Q’(M) and d@ = 0. In particular, it always induces the splitting 
i@. If one does not require the splitting as Lie algebras, then any other splitting of (5) as 

Cm (M)-modules is of the form X H h(X) + 4 (X) with 4 a noncommutative I -form on 
?I with values in Cm(M). The curvature of such a splitting is 24. 

Then b identifies Der(S1) as a Lie subalgebroid of A(E). This Lie subalgebroid is the 
set of elements of A(E) which preserve the volume on E. In this identification Int(41) is 
mapped to 30. 

4. Noncommutative connections 

Let us now turn to noncommutative connections for the differential calculus fiD,r(‘?l) on 
the previously defined algebra !‘I. We consider here connections on right or left %-modules. 
These noncommutative connections have been defined in [2] and used in many approaches 
to noncommutative geometry. 

4.1. The right module !X 

The simplest example is the right module W itself which is the free right ?I-module of rank 
1. On this right module there is a natural hermitian form defined by (S, S’) = S*S’ E \‘t for 
any S. S’ E ‘!I. In this case, a noncommutative connection is an application 

such that ?x(SS’) = SX(S’) + ?x(S)S’ and ?~xS = f’?,vS for any S, S’ E 3 and 
f’ E Z(3). The curvature of a noncommutative connection is defined by fi(X, Y)S = 
[TX, G,]S - ?l~.ylS for any S E Pl and X, y E Der(?l), which is a right %-module 
homomorphism. 
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Any noncommutative right-connection 8 on !‘I is entirely given by ?x = w(X) where 
w is a noncommutative l-form in L$,,(‘?t). One can then write 

Qs = XS + w(X)S 

for any S E 3. The expression ?$S = XS defines a noncommutative connection on 
BI whose curvature is 0. This is a particular point in the affine space of noncommutative 
connections on the right module “1. It is easy to see that the curvature of ? is the left 
multiplication by the noncommutative 2-form 

dw(X, Y) + [w(X), wo91. 

A connection is said to be compatible with the hermitian structure if 

X(S, S’) = &s, S’) + (S, ?xs’, 

for any S, S’ E 91 and real X E Der(?I). This compatibility condition is equivalent to 

w(x)* + w(X) = 0 

for any real X E Der(Yt). 
Any unitary element U E ‘91 with det(U) = 1 defines on 3 a right module endomorphism 

which preserves the hermitian structure and the det application by setting S H US. We 
denote by SU(91) the group of such elements of ?I. This is exactly the gauge group of the 
SU(n)-vector bundle E. We denote by U(8) the group of unitary elements of ‘3. For any 
U E U(3), the gauge transformation of a noncommutative connection ^v is defined by 
?$ S = CT* TX (US). The noncommutative I -form w is then transformed as 

w H lJ*wu + u* du. 

Next proposition says that any (commutative) connection on E defines canonically a 
noncommutative connection on 91. 

Proposition 9. For ajixed choice of a SU(n)-connection VE on E, then of cx as in Propo- 
sition 3, one defines a noncommutative connection ?a by setting 

7;s = v,ys + Sex(X) = xs + (r(X)S 

for any X E Der(BI) and S E 91. 
The curvature of this connection is k”(X, y) = RE(X, Y). 
This noncommutative connection @ is compatible with the hermitian structure on ?L. 
A gauge transformation on V E induces a SU (%)-gauge transformation on ?. 

Proof It is straightforward using the properties of a! and V. 0 

These noncommutative connections are then particular points in the space of noncom- 
mutative connections. Any other noncommutative connection ? can be decomposed as 

?xs = Q;s + A(X)S 
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with A E tiA,,(Yl). In this case, one has 

w(X) = a(X) + d(X). 

Using (2) the supplementary term A can be decomposed itself as 

d(X) = u(X) - B((r(X)). 

Then B is an application 

defined by B(y) = d(udy) for any y E ?lo. 
Physically, the B term has been studied in [6] for the particular algebra Cm(M) @I M, (C). 

It was claimed there that it can be interpreted as Higgs fields. In the present approach, one 
can see that B is independent from the choice of the connection VE on E, because it can 
be written B(y) = ~(a&) + y. The field B is then a well-defined object associated with 
? and corresponds to the “purely noncommutative” part of the connection in the trivial 
situation C%(M) @ M,,(C). In the general case, it is impossible to canonically split the 
connection into a “commutative” part and a “purely noncommutative” one. One has to 
choose an ordinary connection on E to decompose it. 

In a gauge transformation, one wishes to fix the connection of reference cr. In this case, 
the transformation relations of A, a and B are given by 

A H U*dU + U*(VU). a H u*uu + u*(vu). B H U*BU. 

which are almost the ordinary gauge transformations of the connection 1 -form for A and 
u, but with the ordinary differential replaced by V. 

In terms of a and A, the curvature l? of? is given by 

k(x. y) = riU(x, Y) + V,d(y) - V,d(X) - d(Lx, Yl) + [d(x), d(Y)I 

= RE(X, Y) + (dd)(X, Y) + [d(X), d(Y)1 

+ [a(X), d(Y)1 - [(Y(Y). d(X)]. 

With the previous decomposition, one then has 

ri(X. Y) = RE(X, Y) + VXLI(Y) - VYU(X) - u([X, Yl) + [u(X). cr(Y)l 

- Vx B(aOJ)) - [u(X), B(o(Y))l 

+ VrB(a(W) + la(Y), B(a(X))l 

+ [B((Y(X)), B(aW))l + B(o(]X. 24)). 

Notice that the term RE(X, Y) + Vxu(Y) - Vya(X) - u([X, Y]) + [u(X). u(Y)] can be 
interpreted as the curvature of the connection V’g = 0: + u(X) on E. Then the third and 
the fourth lines are expressions of the type V’x B(a(Y)). 
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In [6], for the trivial case P’(M) @ &(C), it was shown that the minima of the action 
written with this curvature is related to its horizontality. In the general case, consider the 
horizontality of the curvature i. Taking X = ud, and y = ad,, one gets the condition 

[B(y), B(v)1 - NY, VI> = 0 (7) 

and taking any Y one gets, using the previous relation, 

V@(Y) - B(Vry) = 0 (8) 

which can be written 

VyB + [a(Y), B] = 0. 

In case these two relations are satisfied, R is horizontal and 

&X, y) = R’E(X, Y) - B&X, Y)). 

Relations (7) and (8) are the generalizations of the expressions found in [6] for the trivial 
case. 

Notice that this computation has been done using the decomposition of the noncommu- 
tative l-form A in w = c~ + A. It is possible to decompose directly the noncommutative 
l-form o as w(X) = a,(X) - B,((r(;Y)) and then compute the curvature. But the expres- 
sions of the horizontality conditions on a, and B, found this way are less suggestive than 
(7) and (8). 

One way to naturally generalize the previous discussion is to consider a right module of 
the type ‘IP form E N. This leads to similar results with much more structures, in particular 
in the Higgs sector (see [6] for the trivial case). 

4.2. The left module r(E) 

As a second canonical example, consider the space T(E) of sections of E which is a 
natural left %-module. Then one has the following result: 

Proposition 10. There is a one-to-one correspondence between splittings of (5) as Coo(M)- 
modules and noncommutative left-connections on r(E). The curvature of a noncom- 
mutative left-connections on T(E) corresponds to the obstruction to be a Lie algebra 
splitting. 

Proof If v is a noncommutative left-connection on T(E), then ?x is a first-order operator 
on E. Using the relation ?x(Se) = (XS)e + S?xe for any e E T(E) and S E Yl, one 
can show that [TX, S] = XS. So X t+ ?x is a splitting of (5) as r?(M)-modules. 
If D : Der(?l) + A(E) is a splitting of (5) as P(M)-modules then D(X)(Se) = 
[D(X), S]e + SD(X)e for any S E 91 and e E T(E). The first term is (XS)e, and so D 
satisfies the derivation rule of a noncommutative left-connection on r(E). cl 
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Then the canonical splitting b defined in Section 3 gives us a canonical noncommutative 
connection of vanishing curvature 

f>(X)r = v,EC? - a(X)e 

for any e E T(E) and X E Der(?t). 
In this case, it is also possible to consider generalizations taking as a direct sum of 

r( E)-left modules. 

5. Conclusions 

Here we have analyzed the noncommutative differential geometry of the algebra ?I of 
sections of the endomorphism bundle of an SU(n)-vector bundle, thereby generalizing 
several results on the algebra of matrix-valued functions. One advantage of doing this is 
to isolate what is canonical and what depends on the choice of a connection. It is worth 
noticing here that not every bundle in matrix algebras can be identified as the endomorphism 
bundle of a vector bundle (there are well-known homological obstructions of that). 

We have shown that connections on SU(n)-vector bundles can be identified with the 
affine subspace of fioer(?f) of traceless antihermitian elements satisfying ~?(a&) = -y. 
This latter condition is the analog of the vertical projection property of the corresponding 
connection form on the appropriate principal SU(n)-bundle. Notice however that here no 
equivariant property is required. In fact, it is apparent here that the noncommutative algebra 
\‘I can be used in many respects like this principal bundle. Doing that, we also make a bridge 
between the notion of Lie algebroids and the noncommutative differential calculus based 
on derivations. Furthermore, we have shown that the noncommutative connections on right 
or left modules are natural extensions of the usual connections. 

Here we have restricted our attention to the structure group SU(n). But it is clear that by 
forgetting hermitian properties, one can pass to SL (n, Cc), and by imposing reality, one can 
pass to SO(n). 
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